Generalized quiver varieties and triangulated categories
نویسندگان
چکیده
منابع مشابه
Cluster Algebras, Quiver Representations and Triangulated Categories
This is an introduction to some aspects of Fomin-Zelevinsky’s cluster algebras and their links with the representation theory of quivers and with Calabi-Yau triangulated categories. It is based on lectures given by the author at summer schools held in 2006 (Bavaria) and 2008 (Jerusalem). In addition to by now classical material, we present the outline of a proof of the periodicity conjecture fo...
متن کاملQuiver Varieties and Branching
Braverman-Finkelberg [4] recently propose the geometric Satake correspondence for the affine Kac-Moody group Gaff . They conjecture that intersection cohomology sheaves on the Uhlenbeck compactification of the framed moduli space of Gcpt-instantons on R /Zr correspond to weight spaces of representations of the Langlands dual group G∨aff at level r. When G = SL(l), the Uhlenbeck compactification...
متن کاملTriangulated Categories and Stable Model Categories
X id → X → 0→ · For any morphism u : X → Y , there is an object Z (called a mapping cone of the morphism u) fitting into a distinguished triangle X u − → Y → Z → · Any triangle isomorphic to a distinguished triangle is distinguished. This means that if X u − → Y v − → Z w −→ X[1] is a distinguished triangle, and f : X → X, g : Y → Y , and h : Z → Z are isomorphisms, then X′ gu f −1 −−−−→ Y ′ hv...
متن کاملLocalizations in Triangulated Categories and Model Categories
Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...
متن کاملSmoothing of Quiver Varieties
We show that Gorenstein singularities that are cones over singular Fano varieties provided by so-called flag quivers are smoothable in codimension three. Moreover, we give a precise characterization about the smoothability in codimension three of the Fano variety itself.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2018
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-018-2140-z